Purdue Weekly Report [1]
Purdue Weekly Report [1]
Jinning, 09/17/2018
Method 1: Using expectation to estimate coefficient
Reference: Some Topics in Analysis of Boolean Functions, Ryan O’Donnell.
Assume \(S\) is a subset of the set \([n]\). \(|[n]|=2^n\).
According to the reference, \(\hat{f}(S)\) can be expressed as
\[ \hat{f}(S)=\mathbb{E}_x[f(x)\mathcal{X}_S(x)] \]
We’re going to estimate \(\hat{f}(S)\) by
\[ \tilde{f}(S)=\frac{1}{N}\sum_{i=1}^{N}f(x_i)\mathcal{X}_{S}(x_i) \]
We use \(Var(\tilde{f}(S))\) to estimate the speed of learning.
\[ Var(\tilde{f}(S))=\frac{1}{N^2}Var(\sum_{i=1}^{N}f(x_i)\mathcal{X}_{S}(x_i)) \]
\[ =\frac{1}{N}Var(f(x)\mathcal{X}_{S}(x)) \]
where, \[ Var(f(x)\mathcal{X}_{S}(x))=\mathbb{E}_x[f^2(x)\mathcal{X}_S^2(x)]-[\mathbb{E}_x[f(x)\mathcal{X}_S(x)]]^2 \]
\[ =\mathbb{E}_x[f^2(x)]-\hat{f}^2(S) \]
\[ =\frac{1}{N}\sum_{S_i\in [n]}\hat{f}^2(S_i)-\hat{f}^2(S) \]
So, the convergence speed is not necessarily decreasing with degree.