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Abstract

Learning from the logged bandit feedback is an important
task in machine learning. Some previous methods minimize
the counterfactual risk with batch learning algorithm and the
others reduce this task into a prediction problem of super-
vised learning. However, both of these two kinds of methods
have their own advantages and disadvantages. In this paper,
we will introduce a hybrid framework combining the advan-
tages of these two kinds of methods. In this new framework,
the difference between the observed feedbacks and our pre-
dictions are minimized. The importance sampling of propen-
sities of logging policy and new policy is used as the weight-
ing for the loss function of supervised learning. Experimental
result proves that this new framework can improve the policy
learning performance on the Criteo dataset by reducing bias
and variance.

Introduction
The logged data can be find almost everywhere in our daily
life. For example, the interaction between the user and
an item recommendation system will be recorded. These
logged data can be viewed as knowledge basis. How to learn
from these knowledge basis is an interesting and important
task in machine learning. In this paper, we will focus on a
kind of data format named logged bandit feedback recorded
from interactive systems.

Many previous works are already capable of learning
from the logged bandit feedback. There are mainly two
kinds of method. The first kind is to directly learn a new pol-
icy system minimize a measure named counterfactual risk,
such as the banditnet proposed in (Joachims, Swaminathan,
and de Rijke 2018). The second kind is to reduce this policy
learning task into supervised learning. A network is trained
to predict the unseen feedbacks with the observed feedbacks.
Then a new policy is built based on the predicted feedbacks,
such as the model introduced in (Beygelzimer and Langford
2009).

However, both of these methods have their advantages and
disadvantages. For example, the counterfactual risk mini-
mization methods will face a problem of bias-variance trade-
off. It is also hard to bound its variance and to select a suit-
able hyper-parameter. The supervised learning method can
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only estimates the policy indirectly. So the performance of
this kind of method will be limited if the logging policy is
complex or only limited candidates are preferred and dis-
played by logging policy.

In this paper, we introduce a hybrid framework of counter-
factual risk minimization and supervised learning. The dif-
ference between the observed feedbacks and our predictions
are minimized. The importance sampling of propensities of
logging policy and new policy is also used as the weight-
ing for the loss function of supervised learning. Experiment
proves that this hybrid framework can reduce the bias while
control the variance. Clipping and variance can also be ap-
plied to the objective of hybrid learning for better perfor-
mance.

Preliminaries
Logged Bandit Feedback
The logged data of bandit feedbacks exists everywhere. It
can be recorded by the systems such as search engines, ad
placements and recommendation systems. Assume that the
input of a system is the features of some samples, denoted
by x ∈ X . The output is a prediction y ∈ Y . For example,
in the item recommendation system, the input x can be the
features of items and users, and the prediction y can be the
ranking from user. We assume the input x is drawn from an
fixed but underlying distribution P (X ). An hypothesis space
H is assigned to the learner. A hypothesis h(Y|x) ∈ H is a
mapping from the input space to the output space Y . The
hypothesis will make predictions by sampling y ∼ h(Y|x).
For the convenience, we use h(x) to denote h(Y|x).

However, in the setting of interactive learning system, we
can only observe the feedback δ(x, y) for the y sampled
from h(x). For example, in the item recommendation sys-
tem, we can only observe the ranking of user after we rec-
ommend an item for the user. The objective of an item rec-
ommendation system is to find a hypothesis h ∈ H max-
imizing the ranking or minimize the risk, or say, expected
loss:

R(h) = Ex∼P (X )Ey∼h(x)[δ(x, y)] (1)

During the interaction between user and recommenda-
tion system, we assume the hypothesis h is unchanged. We
use π0 to denote the logging policy using this fixed hy-
pothesis. The input features x, the prediction, or say, action



y ∼ π0(Y|x), and the feedback δ can be logged for train-
ing a new policy training. We also assume that the propen-
sity for the system to make prediction y is also recorded as
p = π0(y|x). The data collected from the system is:

D = {(x1, y1, δ1, p1), ..., (xn, yn, δn, pn)} (2)

Counterfactual Risk Minimization
The objective of learning of logged bandit feedback is to
learn a new policy πw that minimize the distribution mis-
match between π0 and πw. That is to minimize an unbiased
estimate of R(πw):

R(πw) =
1

n

n∑
i=1

δi
πw(yi|xi)

pi
(3)

However, it is not practical to optimize this equation di-
rectly. There are three reasons. First, this strategy is not in-
variant to additive transformation of the logged loss. The
gradient will be significantly affected if the loss is not scaled
properly. Second, this estimator has unbounded variance. A
constraint to limit the variance of the new policy is required.
Third, this equation is not capable to estimateR(πw) for dif-
ferent policies because they may have vastly different vari-
ance.

There are mainly two kinds of machine learning methods
to solve this task. The first kind is applying batch learning
method to minimizing this counterfactual risk. The second
kind is reduce this counterfactual risk minimization task into
a supervised learning task. We will introduce an batch learn-
ing method named Policy Optimizer for Exponential Mod-
els (POEM) algorithm in Section . We will introduce how
to reduce this task into supervised learning and some vari-
ants of supervised learning in Section . In Section , we will
introduce how to hybrid the counterfactual risk minimizing
methods with supervised learning methods in Section .

Batch Learning: Policy Optimizer for
Exponential Models

The idea of the Policy Optimizer for Exponential Models
(POEM) (Swaminathan and Joachims 2015) is to minimiz-
ing the counterfactual risk estimation directly while apply-
ing different constraints such as regularizer to control the
bias and variance. POEM is proved to be effective by solv-
ing the three problems mentioned above. The objective of
POEM is

arg min
w∈Rd

1

n

n∑
i=1

δi min{M,
πw(yi|xi)

π0
}+ λ

√
V arw(x)

n
,

(4)
where w is the parameters of the learner such as neural net-
works. n is the number of samples in training dataset. δi is
the logged feedback by logging policy π0. πw is the new

policy we are training.
√

V arw(x)
n is the standard deviation

regularizer scaled by the hyper-parameter λ. The minimiza-
tion operation minM, · here is the clipping operation with a
threshold M .

In Eqn.4, πw(yi|xi) is the propensity of piw for the ac-
tion yi under the condition of input contextual features xi.
πw(yi|xi) can be estimated by a Softmax function

πw(yi|xi) =
exp(w · φ(xi, yi))∑

y′
i∈Yi

exp(w · φ(xi, y′i))
, (5)

where φ(·) is a combination function, for example, the con-
catenation operation. φ(xi, yi) is the joins of contextual fea-
tures of input xi and action yi.

The clipping operation is a bias-variance tradeoff pro-
ceess. It will reduce the variance of our model but slightly
increase the bias. Well balanced bias and variance are im-
portant for the improvement of our new policy πw. The stan-
dard deviation regularizer mentioned above is also capable
of bounding the variance of πw. All these constraints helps
the learning of new policy to minimize the distribution mis-
match between πw and π0.

Supervised Learning: Variants
Another effective method to solve the counterfactual risk
minimization task is to reduce it into an supervised learn-
ing task. In the setting of logged bandit feedback, we can
only observe the feedback of the actions which we already
chose to display. The idea of using supervised learning is to
train a learner such as neural networks or linear regression
with already observed feedbacks, to predict the unseen feed-
backs. Then, we can manually select a policy based on these
predicted feedbacks. In another word, the learner is trained
to select a hypothesis h ∈ H to fit the observed feedback δi

h = argmin
hw

n∑
i=1

L(δi, hw(xi, yi)), (6)

where L is the expected loss between the logged feedback δi
and our predictions. With the feedback predictions, we can
manually select a new policy such as choosing the actions
with largest feedback

π̂(yi|xi) = argmax
yi∈Y

(h(xi, yi)) (7)

The most straightforward method is to minimize the cross
entropy loss between the logged bandit feedback and our
predictions

Lh = − [δ · log h(x, y) + (1− δ) · log(1− h(x, y))] . (8)

Inverse Propensity Weighting
Reducing the counterfactual risk minimization problem into
supervised learning directly will cause bias. Because we
only observe the feedback of candidate selected by π0.
Since the logging policy π0 will always choose some actions
having high propensities. Therefore these actions are more
likely to appear in the logged data. The sampling of logged
data will become unbalanced. This problem will affects the
bias of our new policy significantly. In order to solve this
problem, we introduce the inverse propensity method to our
objective.

Lh = − 1

p0
[δ · log h(x, y) + (1− δ) · log(1− h(x, y))] .

(9)



Although the propensity weighting can reduce the bias
caused by unbalanced sampling, it will leads to another two
problems. First, propensity weighting will cause high vari-
ance because the logged propensity p0 can be extremely
small. The variance of the inverse propensity is also un-
bounded. Second, we know that in the logged bandit feed-
back, the propensity p0(yi|xi) of an action yi is estimated
by π0 within an action space Y〉. the propensity of action
yi is different with respect to different action space Y〉. It’s
not a global propensity for the action yi. It’s not suitable
to weight the expected loss with inverse propensity directly.
Note that this problem does not affect the POEM model be-
cause POEM is trains in batches of every action space Y〉.

Inverse Propensity Weighting with Clipping
The most effective way to solve the problem of unbounded
variance is applying clipping to the inverse propensity
weighting. The expected loss can be expressed as

Lh =−min{M,
1

p0
}[δ · log h(x, y) (10)

+ (1− δ) · log(1− h(x, y))], (11)

where the hyper-parameter M is the clipping threshold.
The clipping method is effective because it will control

the gradient of back-propagation when 1
p0

goes too large.
Practically, 1

p0
can often goes extremely large because if all

the action yi ∈ Y〉 are negative samples, the propensity can
be unlimited closed to 0.

Hybrid method: Counterfactual Supervised
Learning

In order to solve the second problem mentioned in Section ,
we use the important sampling to weight the loss function.
That is, we introduce the propensity of new policy into the
numerator of inverse propensity. The new loss function is

Lh = −pw
p0

[δ · log h(x, y) + (1− δ) · log(1− h(x, y))] .
(12)

This kind of weighting solves the problem that p0 is
bounding with specific action space Y〉, because the value
1
p0

is balanced with the new propensity pw also estimated
within the action space Y〉. We can use the Softmax function
to estimate pw by

pw(yi|xi) =
exp[h(xi, ŷi)−maxh(xi, yi)]∑

yi∈Yi
exp[h(xi, yi)−maxh(xi, yi)]

(13)
This method can also reduce the variance since the value

of 1
p0

can be bounded by pw to a great extent.
Compared with the objective of POEM in Eqn.4 and the

straightforward supervised learning in Eqn.8, this hybrid
model not only minimizes the feedback difference of the ac-
tion y0 selected by p0, but also applies batch learning for
all the actions in action space Yi. This process is shown in
Figure 1.

Figure 1: Loss calculating of hybrid learning method. This
action space includes 4 candidate actions. Action 1 is se-
lected for display by π0. First, the hybrid learning minimizes
the difference between the predicted feedback and observed
feedback of action 1. Second, the hybrid learning calculate
the relative propensity pw by applying Softmax function to
all candidate actions.

Applying clipping and variance regularizer
The clipping operation and variance regularizer can also be
applied to the objective of hybrid learning method. The gen-
eral representation of loss function can be written as

Lh =−min{M,
pw
p0
}[δ · log h(x, y) (14)

+ (1− δ) · log(1− h(x, y))] + λReg. (15)

For example, the regularizerReg can be tanh-MSE differ-
ence between 1

pw
and 1

p0
and the regularizer used by POEM√

V arw(x)
n .

Experiments
We operate the Experiment based on the dataset
from NIPS’17 Workshop: Criteo Ad Placement Chal-
lenge (Lefortier et al. 2016) on CrowAI platform. All
the codes are avaliable here: https://github.com/
jinningli/ad-placement-pytorch.

Figure 2: Multiple layer perceptron used in our experiments.
The first layer contains 74000 dimensions and the second
layer contains 4096 dimensions.

In our experiments, an two layer perceptron is adopted
as the hypothesis space H. The feature is encoded as One-



Hot in order to be inputted to the networks. Note that Sig-
moid function is not applied in the setting of hybrid learning
method.

Criteo Ad Placement Dataset
The dataset of the Criteo Ad Placement dataset used in our
experiments follows the data format mentioned in Eqn. 2. In
the setting of Criteo dataset, the logging policy π0 represents
the Ad placement policy used by Criteo company. xi is the
context of Ad candidates. yi represents which candidate is
chosen to display, pi is the corresponding propensity. The
feedback is whether the Ad is clicked by user. If it’s clicked,
δi is equal to one. The action space Yi is called impression.
An impression is an Ad position with several Ad candidates.

Metrics
There are mainly two evaluation metrics of the Criteo
dataset. The first one is the inverse propensity score (IPS),
represented by

IPS =
104

n+ + 10n−

n∑
i=1

δi
πw(ŷi|xi)

π0
(16)

where πw(ŷi|xi) is the new policy developed by our algo-
rithm. πw(ŷi|xi) is calculated by

πw(ŷi|xi) =
exp[h(xi, ŷi)−maxh(xi, yi)]∑

yi∈Yi
exp[h(xi, yi)−maxh(xi, yi)]

,

(17)
In this formula, the n+ + 10n− is to balance the number of
positive and negative samples. We can ignore the factor 104

The second metric is the standard deviation of IPS, the
formulation is

2.58×
√
n

n+ + 10n−
× Std[δ πw(ŷi|xi)

π0
] (18)

It’s the standard deviation of IPS on all the impressions.

Baseline on Criteo Dataset: Follow the Regularized
Leader
Follow the Regularized Leader (FTRL) algorithm (McMa-
han 2011) is first proposed by Google in 2003. It’s used
by the Rank 1 of the Criteo Ad Placement Challenge in
2007. FTRL is an online learning method which is adapted
for faster and better processing for sparse feature represen-
tations. However, we’re not going to introduce the detail
of FTRL. What really interests us is his post-processing
method

h(x, y) =
850100

1 + e−h(x,y)+1.1875

In this paper, we will introduce why his post-processing
is so critical. This explains why other participants got much
lower scores.

The reason is Most participants treat this challenge as a
CTR prediction challenge. So, their output δ̃ ∈ [0, 1]. How-
ever, the Softmax function in Eqn.17 is applied to get πw,
which is embedded in the evaluation program.

Using post-processing, their πw in evaluation program
look like: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3.05902e-07]. This πw

is more reasonable because it has a clear preference for the
candidate with propensity 1.

However, without post-processing, their πw in evalu-
ation program look like [0.984536, 0.980575, 0.984368,
0.974204, 0.97577, 0.986368, 0.976827, 1, 0.984053,
0.995168, 1]. The propensity for all of the candidates are
almost the same. So this πw is almost the same to random
selection.

Effectiveness of Clipping
we investigated how the clipping method affects the bias-
variance tradeoff for the inverse propensity weighting with
clipping model introduced in Section .

Figure 3: The percentage of clipped inverse propensity
changes with the clipping threshold M .

We first analyze the distribution of inverse propensity on
the Criteo dataset. Figure 3. When M = 1, all the inverse
propensities are clipped because inverse propensity is al-
ways larger than 1. The problem degenerates to straight-
foward supervised learning in Section When M = +∞, no
inverse propensities are clipped. The problem degenerates
to non-clipping model in Section . According to the distri-
bution shown in Figure 3, we selected M=[1, 2, 5, 10, 15, 20,
30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550] to
see how the IPS score varies.

Figure 4: The inverse propensity score under different M .



The IPS value under different threshold M is shown in
Figure 4. We can find that without propensity weighing, or
say, threshold is 1, the IPS is 58.4. When M = +∞, no in-
verse propensities are clipped. The IPS value is about 54.55.

The top IPS appears when M = 30. The IPS is about
60.6, which is better than two extreme M . So The clipping
can improve the performance of our model.

Figure 5: The standard deviation of inverse propensity score
under different M .

The standard deviation is shown in Figure 5. An interest-
ing thing is that, it seems the higher IPS is, the higher stan-
dard deviation it receives. Maybe this is because the predict
for the negative samples becomes more accurate, so there
will be more IPS whose value is zero. The standard devia-
tion is thus increased.

Inverse Propensity Scoring and Standard Deviation
We test the inverse propensity scores and their correspond-
ing standard deviations for different models mentioned in
this paper. All the result is shown in Table.1.

Table 1: IPS and Standard Deviation of IPS on different
models

Model IPS IPS Std
FTRL 55.70 4.30

Straightforward Supervised Learning 59.25 5.46
Inverse Propensity Weighting 54.55 2.94

Inverse Propensity with Clipping 60.60 15.80
Hybrid Learning 61.69 27.06

Hybrid (no gradient for πw) 52.95 2.42
Hybrid with tanh-MSE regularizer 52.46 5.41

The highest IPS I got is from Hybrid Learning model and
the smallest standard deviation comes from Hybrid Learn-
ing without no gradient of πw. The result shows that the
Straightforward Supervised Learning model is already ca-
pable of learning a good Ad placement policy with suit-
able hyper-parameters. Pure Inverse Propensity Weighting
model does not perform well. However, clipping helps im-
proves the performance of Pure Inverse Propensity Weight-
ing model. After applying tanh-MSE regularizer, the IPS of
Hybrid Learning is reduced. This can be attributed to im-
proper regularizer or value of λ.

Conclusion
Logged bandit feedback is an important data format
recorded on the interactive systems such as item recommen-
dation, Ad placement, and search engines. In this paper, we
propose a hybrid learning method combining counterfactual
risk minimization and supervised learning on logged ban-
dit feedback. We also investigate the effectiveness of post-
processing and clipping method. Experimental result prove
that hybrid learning can help reduce both of the bias and
variance. Higher inverse propensity scoring and lower stan-
dard deviation is obtained by hybrid learning method. In the
future work, experiments of more previous works should
be operated to compare with our model. We should also
try to use another dataset for experiments. We can also try
other network architectures such as convolutional neural net-
works.
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